

GIT
AND
GITHUB
CHEAT SHEET

https://github.com/EshanTrivedi21/Git-CheatSheet

GIT & GITHUB CHEAT SHEET

TOPIC: GIT-GITHUB CHEATSHEET

DESCRIPTION: Your very own Git and Github Cheatsheet!

REFERENCE: Git-Github Bootcamp (Colt Steele) - Udemy

AUTHORs: EshanTrivedi21, VinayKanase and Aryan-Parmar

REPOSITORY: https://github.com/EshanTrivedi21/Git-CheatSheet

Git & Github Cheat sheet Topics

1 . TERMINAL BASICS

2 . SETTING GIT USER NAME AND EMAIL

3 . GETTING GIT HELP

4 . CREATING A GIT REPOSITORY

5 . STAGING FILE/FILES OF THE REPOSITORY

6 . COMMITING A COMMIT

7 . GIT BRANCHING

8 . GIT IGNORE

9 . MERGING BRANCHES

10 . TIME TRAVELLING WITH GIT

11 . CREATING GITHUB RESPOSITORIES

12 . THE origin/master THEORY

13. FETCHING AND PULLING

14 . PULLING INTERFERES IN THE WORKING DIRECTORY

15 . FORCE PUSH AND PULL

16 . GITHUB COLLABORATION

17 . GIT REBASING

18 . GIT TAGS

19 . GITHUB DESKTOP

1. TERMINAL BASICS

It is the LIST command which LISTS all the contents of a Directory

$ ls

LOCATES to a directory and then LISTS the contents

$ ls foldername

PRINT WORKING DIRECTORY

$ pwd

CHANGES and HOPS onto the respective Working Directory

$ cd C:\User\username\foldername

HOPS onto Parent Directory of the Working Directory

$ cd ..

CLEARS the used Terminal

$ clear

QUITS out of a entered command

$ q

CREATES an Empty directory inside the Working Directory

$ mkdir foldername

DELETES the file

$ rm filename

DELETES the directory

$ rm -rf foldername

OPENS the File Explorer to the ROOT Directory

$ start .

2. SETTING GIT USER NAME AND EMAIL

To CHECK if git User-Name is set

$ git config user.name

To CHECK if git User-Email is set

$ git config user.email

To SET or CHANGE git User-Name

$ git config --global user.name "Name Lastname"

To SET or CHANGE git User-Email

$ git config --global user.email "email"

To SET or CHANGE default code editor as VSCode

$ git config --global core.editor "code --wait"

To CHANGE git User-Name and git User-Email directly in the config file using vim

$ git config --global –edit

To Store git User-Name and git User-Email in disk

$ git config credential.helper store

To exit vim

$ escape key + :wq

3. GETTING GIT HELP

Use for more details and examples on any of the below (or above) commands

$ git command --help

4. CREATING A GIT REPOSITORY

STEP 1: INITIALIZES an empty repository

$ git init

STEP 2: to CHECK the status of a repository

$ git status

5. STAGING FILE/FILES OF THE REPOSITORY

STAGES the file

$ git add filename.txt

UN-STAGES the file

$ git rm --cached filename.txt

STAGES all files in the repository

$ git add --all

OR
$ git all .

OR
$ git add .

6. COMMITING A COMMIT

COMMITS the STAGED files with a commit message

$ git commit -m "commit message"

SKIPS the Staging part and directly COMMITS

$ git commit -a -m "commit message"

LOGS all the commits done to the repository

$ git log

LOG commits in a single line

$ git log –oneline

AMMENDS the previous commit

$ git commit –ammend

LOGS the changes

$ git diff

7. GIT BRANCHING

LOGS all the branches of the Working Repository

$ git branch

CREATES a new branch

$ git branch <new-branch>

SWITCHES the Branch from one to another or CHANGING HEAD

$ git switch <new-branch>

CREATES a new branch and then SWITCHES to the branches

$ git switch -c <new-branch>

CREATES a new branch and then SWITCHES to the branch

$ git checkout -b <new-branch>

DELETES newbranch

$ git branch -D <new-branch>

CHANGES the name of the Branch you are Headed on

$ git branch -M <final-branch>

TO DELETE A REMOTE BRANCH IN GIT

$ git push --delete <origin branchname>

8. GIT IGNORE

STEP 1: create a .gitignore file

STEP 2: add files or folders inside the file to ignore, now the files are are untracked by github

and wont be staged or commited

9. MERGING BRANCHES

9.1 FAST FORWARD MERGE

STEP 1: SWITCH the HEAD first to the first branch

$ git switch master

STEP 2: MERGES newbranch into master with HEAD on master

$ git merge <new-branch>

9.2 NOT ALL MERGES ARE FAST FORWARD MERGES

WITH OUT MERGE CONFLICTS

$ git switch master

CREATES a new commit unlike fastforwarding merges

$ git merge -m "mergering message"

9.3 MERGE CONFLICTS

STEP 1: OPEN UP files having merge conflicts

STEP 2: REMOVE the conflicts

OPTION 1: ACCEPT INCOMING CHANGES

OPTION 2: ACCEPT CURRENT CHANGES

OPTION 3: ACCEPT BOTH CHANGES

OPTION 4: COMPARE CHANGES

STEP 3: REMOVE the conflict markers

STEP 4: STAGE and COMMIT the changes

ABORT MERGE WHEN UNRESOLVABLE CONFLICTS OCCURRED

$ git merge --abort

9.4 STASHING IN GIT

CHANGES WILL EITHER COME IN THE DESTINATION BRANCH
GIT WONT ALLOW SWITCHING IF THERE ARE CONFLICTS

STASHES the changes

$ git stash

UN STASHES the changes, use it when you resume your work

$ git stash pop

APPLY stashed changes into another or the same branch

$ git stash apply

IF WORKING WITH MULTIPLE STASHES

LOGS all the stashes

$ git stash list

STASHES the changes in the Stash index 1

$ git stash apply stash@{1}

DELETES the stash, p.s. applying the stash doesnt delete it

$ git stash drop stash@{1}

CLEARS the whole stash list

$ git stash clear

10. TIME TRAVELLING WITH GIT

10.1 TO JUST CHECK WHAT THE REPOSITORY LOOKED LIKE IN THE

COMMIT ID 604a39a

DETACHES HEAD and attaches it to the commit with the commit id 604a39a, this is not
normal because HEAD is meant to map a whole branch and not a specific commit

$ git checkout 604a39a

DETACHES HEAD and ATTACHES it to the previous commit

$ git checkout HEAD~1

RE-ATTACHES HEAD and now the head properly maps onto the master branch

$ git switch master

10.2 TO CREATE AND WORK WITH A NEW BRANCH AT COMMIT ID

604a39a

$ git checkout 604a39a

now the head is perfect where it should have been

$ git switch -c <new-branch>

10.3 TO RESTORE ALL CHANGES TO TRACKED FILES

$ git reset origin/main --hard

10.4 TO RESTORE CHANGES OF A PARTICULAR FILE TO THE LAST

COMMIT

$ git checkout HEAD filename.txt
OR

$ git restore filename.txt

10.5 TO RESTORE CHANGES OF A PARTICULAR FILE TO THE

SECOND-LAST COMMIT

$ git restore --source HEAD~1 filename.txt

10.6 UNSTAGE A FILE

$ git restore --unstaged filename.txt

10.7 RESETING THE REPOSITORY TO A PARTICULAR COMMIT

NOTE: it resets the head to the commit id 604a39a, but it doesnt delete the changes, it like
there is no commit made after commit id 604a39a

$ git reset 604a39a

LOOSES the commit as well as LOOSES the contents of the commit

$ git reset --hard 604a39a

10.8 REVERTING THE REPOSITORY TO A PARTICULAR COMMIT

REVERTS the changes in that particular commit and CREATES a new commit after reverting
changes p.s. this helps while collaboration

$ git revert 604a39a

11. CREATING GITHUB RESPOSITORIES

11.1 BUILD A NEW REPOSITORY AND START WORKING FROM

SCRATCH (BY REMOTING)

STEP 1: CREATE A NEW REPOSITORY ON YOUR GITHUB WEBSITE AND COPY THE
URL

STEP 2: CREATES an empty git repository

$ git init

STEP 3: WRITE YOUR PIECE OF CODE
STEP 4: a commit is needed to push any files to github

$ git commit -a -m "first commit"

STEP 5: CREATES a new REMOTE DESTINATION for the github repository

$ git remote add origin <copied url>

LOGS out the REMOTE URL if any

$ git remote –v

STEP 6: PUSHES the last commited code to github p.s. the -u is like a setting the origin

remote and master branch as a default so that we can use just >> git push in future

$ git push -u origin <branchname

11.2 BUILD A NEW REPOSITORY AND START WORKING FROM

SCRATCH (BY CLONING)

STEP 1: CREATE A NEW REPOSITORY ON YOUR GITHUB WEBSITE AND COPY THE
URL

STEP 2: CLONES as well as automatically sets the REMOTE DESTINATION

$ git clone <copied url>

STEP 3: WRITE YOUR PIECE OF CODE
STEP 4: a commit is needed to push any files to github

$ git commit -a -m "first commit"

STEP 5: PUSHES the last commited code to github p.s. the -u is like a setting the origin
remote and master branch as a default so that we can use just >> git push in future

$ git push -u origin <branchname>

11.3 CONNECT YOUR PREEXISTING GIT REPOSITORY TO A NEW

GITHUB REPOSITORY

STEP 1: CREATE A NEW REPOSITORY ON YOUR GITHUB WEBSITE AND COPY THE
URL

STEP 2: CREATES a new REMOTE DESTINATION for the github repository

$ git remote add origin <copied url>

LOGS out the REMOTE URL if any

$ git remote –v

STEP 3: PUSHES the last commited code to github p.s. the -u is like a setting the origin

remote and master branch as a default so that we can use just >> git push in future

$ git push -u origin <branchname>

12. THE origin/master THEORY

 origin/master IS CALLED AS A REMOTE TRACKING BRANCH, IT IS A REMOTE BRANCH

THAT REPRESENTS OUR LOCAL BRANCH

LOGS the remote tracking branch

$ git branch -r

To check out the remote branch code: DETACHES HEAD onto the remote tracking HEAD, in
a case where the local branch is ahead of the remote branch and not up to date, push to make
it up to date

$ git checkout origin/master

BY DEFAULT, ONLY LOCAL MASTER BRANCH IS CONNECTED TO THE REMOTE
BRANCH BUT OTHERS NEED TO BE CONNECTED IN ORDER TO WORK WITH THEM
AND THE SIMPLEST WAY TO DO SO IS

 To check all the branches available

$ git branch –r

This automatically CONNECTS the two branches and we can freely work on them now

$ git switch branchname

Now this correctly LOGS all the connected branches

$ git branch

13. FETCHING AND PULLING

FETCHING ALLOWS TO GET CHANGES FROM THE GITHUB REMOTE
REPOSITORY TO OUR LOCAL GIT REPOSITORY BUT DOESN'T CHANGE INTO THE
WORKING DIRECTORY

To receive the new commits

$ git fetch

CREATES a new branch having the changes but this doesnt interfere in the working
directory, the origin/master now heads on to this new branch and the master branch would be
one branch behind the origin/master

$ git fetch origin

OR
$ git fetch origin branchname

To check out the remote branch code: DETACHES HEAD onto the remote tracking HEAD, in
a case where the local branch is ahead of the remote branch and not up to date, push to make
it up to date

$ git checkout origin/master

14. PULLING INTERFERES IN THE WORKING DIRECTORY

PULLS the changes and merges the changes with the branch you want to OR default

$ git pull origin
OR

$ git push origin branchname

SOLVE MERGE CONFLICTS IF ANY

15. FORCE PUSH AND PULL

This will delete your previous commit(s) and push your current one. f signifies force

$ git push origin <your-branch-name> -f

This is nothing but fetch + rebase. This will invoke rebase in interactive mode where you can
choose how to apply each individual commit that isn't in the history you are rebasing on

$ git pull --rebase=interactive

OR
$ git pull --rebase=i

16. GITHUB COLLABORATION

CENTRALIZED WORKFLOW: EVERY BODY WORKS ON THE SAME MAIN BRANCH AND
PUSH AND PULL IN THE MAIN BRANCH ONLY.

FEATURE BRANCH WORKFLOW: EVERY FEATURE IS PUSHED UPON ANOTHER
INDEPENDANT BRANCH TO MINIMIZE MESS

GITHUB PULL REQUEST WORKFLOW: Once a pull request is opened, you can discuss and
review the potential changes with collaborators and add follow-up
commits before your changes are merged into the base branch.

GITHUB FORKS AND CLONE WORKFLOW: Forking nd then opening a pull request to the
owner of the main repository.

17. GIT REBASING

REBASES OR SEPARATES THE HISTORY OF THE NEWBRANCH FROM THE MASTER
BRANCH

$ git switch newbranch

REBASES or MERGES master into newbranch

$ git rebase master

17.1 CONFLICTS WHILE REBASING

STEP 1: Resolve the CONFLICTS MANUALLY

STEP 2:

$ git add

STEP 3:

$ git rebase --continue

17.2 INTERACTIVE REBASING

OPENS up the code editor where you can play with the nth last commits and above

$ git rebase -i HEAD~n

CHANGES the name of a specific commit

$ reword

COMBINES the changes of that commit to the previous commit and then deletes it

$ fixup

DELETES the commit and the commit changes as if they were never written

$ drop

18. GIT TAGS

TAGS A COMMIT AND MARKS IT WITH THE TAG (DENOTES THE IMPORTANCE OF A
COMMIT

Semanting Versioning Format is widely used for tags and releases (v1.0.1) LOGS all the tags

$ git tag –l

LOGS tag name v17

$ git tag -l "v17"

LOGS tag names that start with v17..

$ git tag -l "v17*"

LOGS tags which include beta in their name

$ git tag -l "*beta*"

TO CHECKOUT THE CODE AT THE TAG, USED CHECKOUT LOGS the changes between
both the versions

$ git diff v16.0.1 v16.1.1

CREATES a lightweight tag

$ git tag tagname

CREATES an annotated tag

$ git tag -a tagname

LOGS the message of the git tag "annotated"

$ git show annotation

CREATES a tag at commit number 604a39a

$ git tag -a tagname 604a39a

DELETES the tag

$ git tag -d tagname

TRANSFERS tags to remote servers

$ git push origin tagname

19. GITHUB DESKTOP

Interact with GitHub using a GUI instead of the command line or a web browser

19.1 Installing and authenticating

STEP 1: Download GitHub Desktop for Windows using this [URL]

(https://desktop.github.com/).

STEP 2: Click on “File” on the navbar, go down to “Options,” choose “Accounts,”

and get authentication.

19.2 Contributing to projects with GitHub Desktop

STEP 1: You can create a new repository by selecting the File menu and clicking New
repository.

STEP 2: You can add a repository from your local computer by selecting the File
menu and clicking Add Local Repository.

STEP 3: You can clone a repository from GitHub by selecting the File menu and
clicking Clone Repository.

STEP 4: You can use GitHub Desktop to create a branch of a project.

STEP 5: After you make changes to a branch, you can review them in GitHub
Desktop and make a commit to keep track of your changes.

STEP 6: You can use GitHub Desktop to create issues or pull requests to collaborate
on projects with other people.

STEP 7: When you make changes to your local repositories or when other people
make changes to the remote repositories, you will need to sync your local
copy of the project with the remote repository.

“YOU DID IT!”

SIT BACK AND BE PROUD OF YOURSELF.

